Un modèle d'endommagement anisotrope est proposé pour les matériaux quasi-fragiles tels que le béton.
Comme demandé par la thermodynamique des solides, une seul variable d'endommagement, tensorielle d'ordre 2, est considérée et ce quel que soit le chargement: étant une variable d'état elle représente l'état micro-fissuré de la matière indépendamment du signe du chargement. L'anisotropie de l'endommagement elle même permet de rendre compte de la forte dissymétrie traction/compression.
La variable d'endommagement de Cordebois-Sidoroff-Ladevèze H=(1 -D)^1/2 est introduite dans la modélisation
ainsi qu'une partition deviatorique/hydrostatique est faite. Une modélisation originale du couplage dit "shear-bulk" est donnée, en accord avec des résultats numériques obtenus par éléments discrets. La propriété recherchée d'un adoucissement graduel est obtenue (dans le diagramme contrainte-déformation). La triaxialité des contraintes est utilisée afin d'améliorer les performances multi-axiales du critère de Mazars et {\it in fine} du modèle d'endommagement anisotrope, en bi-compression notamment.